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Figure 1. The interaction of the lactone I with hen egg white 
lysozyme. The change in the fluoresence of lysozyme (6.5 X 10-7 

M) at 320 nm (excitation at 280 cm) in 0.005 MNa citrate-0.18 M 
NaCl, pH 5.0, at 23°, is plotted against the concentration of a I-I[ 
mixture with 13 mol % I (0,105, M) or I-II mixture after hydrolysis 
of I at pH 9 for 30 min (« , 104, M). The rate of lysis of M. lyso-
deikticus cells (53 jug/ml) by 1.1 X 10~7 Mlysozyme, followed by the 
change in absorbance at 450 nm, in 0.07 M Na phosphate, pH 6.2, 
at 30° is plotted against the concentration of a I-II mixture with 18 
mol % I (D, 105, M) or a I-II mixture after hydrolysis of I at pH 6.0 
in 0.3 M phosphate buffer for 4 hr ( • , 104, M). 

The dependence of the fluorescence changes upon the 
concentration of I obeys the equation for the for­
mation of a 1:1 complex and yields an association 
constant of 3.6 X 106 M- 1 . 1 0 Control experiments 
using the colorimetric tests for lactone8 and reducing 
sugar6 showed that during the period of measurement 
(about 1 min) for both fluorescence and lysis, there was 
less than 10% hydrolysis of the lactone and 2 % cleavage 
of a glycosidic linkage. 

On the basis of model building, Blake, et al.,n pro­
posed that in a reactive lysozyme-substrate complex 
the pyranose ring which is bound in subsite D is 
strained from its normal chair conformation toward a 
half-chair conformation in which carbon atoms 1, 2, 
and 5, and the ring oxygen atom lie in the same plane, 
and that such strain is a cause of catalysis because it is 
relieved upon going to the transition state, which 
resembles an oxonium ion, the most favorable con­
formation for which is the half-chair one. A number 
of studies have supported this hypothesis .1 3 - 1 7 The 
present study tests the strain hypothesis for the fol­
lowing reason: the most stable conformation for 
5-lactones is the half-chair one,18 and consequently I 
should bind more strongly to lysozyme in subsites 
A - D than the corresponding tetrasaccharide because 
the lactone ring can bind in subsite D without strain. 
In fact, the association constant for I is 36 times larger 
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than that (105 M-1) for tetra-yV-acetylchitotetraose 
under the same conditions.1 9 Moreover, the tetra­
saccharide appears to bind predominantly only in 
subsites A - C ; it thus avoids the unfavorable subsite 
D.2 0 Studies on the binding of oligosaccharides con­
sisting of alternating units of jV-acetylglucosamine and 
W-acetylmuramic acid have shown that interaction of 
an iV-acetylmuramic acid residue with subsite D con­
tributes a factor of 10~2 to the association constant.1 3 

Since the factor is probably about the same for N-acetyl-
glucosamine,2 1 we estimate that I binds to lysozyme 
3600 times more strongly than tetra-jV-acetyl-
chitotetraose which is bound in the same mode (sub-
sites A - D ) . Thus, relief of strain may account for a 
factor of 103-104 in catalysis. 
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Structure of Chloroaquobis(trimethylarsine)tetrakis-
(trifluoromethyl)rhodiacyclopentadiene. A Complex 
Containing Both Metal-Carbon a Bonds and 
Coordinated Water 

Sir: 
We wish to report what we believe to be the first 

complete structural characterization of a solid complex 
containing both transition metal-carbon a bonds and a 
coordinated water molecule. Previously the existence 
in solution of [C6H5CH2Cr(H2O)5]2+ * and [(CH,),Pt-
(H2O)3]+ 2 has been postulated, but no solids were 
isolated. More recently the complexes [Rh(NHs)4-
(H2O)R]SO4 (R = C2H5, C2F1H) have been isolated 
as solids and have been characterized by their infrared 
and nmr spectra.3 The title compound, RhCl(H2O)-
(As(CH3)S)2C4(CFs)4, is readily prepared by the de-
carbonylation of RhCl(CO)(As(CH3)S)2C4(CFs)4

4 in 
boiling benzene in the presence of moisture. Tt can 
also be prepared by exposing the yellow solid obtained 
by decarbonylating the carbonyl complex in vacuo at 
80° (presumably RhCl(As(CH3)S)2C4(CFs)1) to moist 
air. The infrared spectrum of the complex shows 
bands due to coordinated water at 3550, 3350, and 
1580 c m - 1 , and the analytical data are in accord with 
the proposed formulation.5 

The complex crystallizes from diethyl ether-petroleum 
ether (bp 30-60°) as pale yellow, wedge-shaped col-
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umns. The systematic absences AOO for h = 2n + 1, 
QkO for k = In + 1, and 00/ for / = In + 1 observed 
on Weissenberg and precession photographs (Cu Ka 
radiation) uniquely determine the space group to be 
P2i2i2i. The orthorhombic cell has dimensions a = 
11.580^(1), b = 20.034 (1), c = 10.158 (1) A, V = 
2357 A3. No density was measured owing to the 
ready solubility of the complex in suitable media. A 
total of 2368 unique reflections having sin 0/X ^ 0.6 
was collected on a Picker automated four-circle dif-
fractometer using the 8-26 scan procedure (Zr-filtered 
Mo Ka radiation). Of these, 777 were considered 
to be unobserved, and all data were corrected for ab­
sorption. The structure was solved by Patterson and 
difference Fourier techniques and refined by block-
diagonal least-squares methods to convergence at a 
conventional residual of 0.06. All nonhydrogen atoms 
were refined with anisotropic thermal parameters, and 
the hydrogen atoms of the methyl groups have been 
included in the structure factor calculation. 

A perspective view of the molecule is given in Fig­
ure 1. As in the case of the similar complex RhCl-
(Sb(C6H6)S)2C4(CF3)4- CH2Cl2,

6 the fiuorocarbon moiety 
is clearly a bonded to the metal to give an essentially 
planar rhodiacyclopentadiene ring. The coordination 
about rhodium is thus that of a slightly distorted octahe­
dron. There are two significant ways in which the 
present complex differs from the previous one. The 
first is a significantly longer Rh-Cl distance (2.446 (5) 
vs. 2.381 (3) A; A/a = 13). Two major factors con­
tributing to this are a degree of bond weakening oc­
casioned by the introduction of the sixth group into 
the coordination sphere of the metal and a substantial 
trans effect exerted by the alkyl group. Previously, 
alkyl groups bound to transition metals have been 
shown to exert strong trans influences in a number 
of Pt(II)7 and Rh(III)8 systems. That the latter con­
tributes significantly to this bond lengthening can be 
inferred from the fact that the Rh-C distances are 
only slightly longer in the present complex. The sec­
ond major difference is the pattern of C-C distances 
in the rhodium heterocycle. Whereas in the triphenyl-
stibine complex all three C-C distances are substantially 
equal, here the C2-C3 distance is significantly longer 
(A/tr ~ 4) than both C1-C2 and C3-C4 (see Figure 1), 
with the result that the four-carbon portion more closely 
resembles a c/s-l,3-butadienylene moiety. Semiem-
pirical molecular orbital calculations on models for 
these systems9 show very clearly that the redistribution 
of charge within the molecule caused by the introduction 
of a sixth ligand into the coordination sphere is such 
that a more localized description of the bonding is 
appropriate for the six-coordinate species, viz. 

C=C 
Rh 

sc=c 
These results further support our previous conclusions5 

that in the five-coordinate rhodiacycle there is significant 
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Figure 1. A perspective view of the molecule with the hydrogen 
atoms omitted for clarity. Relevant angles are: As1-Rh-As2, 
178; Asi-Rh-Cl, 90; As1-Rh-O, 87; As2-Rh-Cl, 88; As2-
Rh-O, 92; Cl-Rh-O, 77; Ci-Rh-C4 , 80, 0 -Rh-C 4 , 177; Cl -
Rh-C1 , 175; Rh-Ci-C2 , 114; C1-C2-C3, 114; C2-C3-C4, 118; 
and C3-C4-Rh, 113°. 

•K interaction between the metal and the fiuorocarbon 
portion of the ring. 

Although there appear to be no data available for a 
direct comparison, the Rh-O distance of 2.243 (11) A 
probably represents a rather long bond to Rh(III) 
because of the trans effect noted above. In support 
of this it might be noted that an Ru-O distance of 
2.12 (2) A has been reported for [RuCl6(H2O)]2-, 10 

while the Rh-N distance trans to the C2H6 group in 
[Rh(NHs)6(C2Hs)]Br2 has been found to be 2.256 (8) A.8 

We are currently examining the details of the bonding 
in this type of complex more closely and the results, 
together with a complete account of the present struc­
ture, will be reported shortly. 
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Electrochemistry of Natural Products. HI. A 
Stereoselective, Stereospecific Phenol 
Coupling Reaction1 

Sir: 

We have previously reported2 that the platinum-
catalyzed oxygenation of racemic l,2-dimethyl-7-hy-
droxy-6-methoxy-l,2,3,4-tetrahydroisoquinoline (1) 
gives three, separable pairs of enantiomers (2-4) of 
the carbon-carbon dimer, due to the centers of chirality 
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